Conditional deletion of hypothalamic Y2 receptors reverts gonadectomy-induced bone loss in adult mice.
نویسندگان
چکیده
Reduction in levels of sex hormones at menopause in women is associated with two common, major outcomes, the accumulation of white adipose tissue, and the progressive loss of bone because of excess osteoclastic bone resorption exceeding osteoblastic bone formation. Current antiresorptive therapies can reduce osteoclastic activity but have only limited capacity to stimulate osteoblastic bone formation and restore lost skeletal mass. Likewise, the availability of effective pharmacological weight loss treatments is currently limited. Here we demonstrate that conditional deletion of hypothalamic neuropeptide Y2 receptors can prevent ongoing bone loss in sex hormone-deficient adult male and female mice. This benefit is attributable solely to activation of an anabolic osteoblastic bone formation response that counterbalances persistent elevation of bone resorption, suggesting the Y2-mediated anabolic pathway to be independent of sex hormones. Furthermore, the increase in fat mass that typically occurs after ovariectomy is prevented by germ line deletion of Y2 receptors, whereas in male mice body weight and fat mass were consistently lower than wild-type regardless of sex hormone status. Therefore, this study indicates a role for Y2 receptors in the accumulation of adipose tissue in the hypogonadal state and demonstrates that hypothalamic Y2 receptors constitutively restrain osteoblastic activity even in the absence of sex hormones. The increase in bone formation after release of this tonic inhibition suggests a promising new avenue for osteoporosis treatment.
منابع مشابه
NPY Neuron-Specific Y2 Receptors Regulate Adipose Tissue and Trabecular Bone but Not Cortical Bone Homeostasis in Mice
BACKGROUND Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODO...
متن کاملHypothalamic Y2 receptors regulate bone formation.
Neuropeptide Y (NPY) is a downstream modulator of leptin action, possibly at the level of the arcuate nucleus where NPY neurons are known to express both leptin receptors and Y2 receptors. In addition to the well-described role of NPY and leptin in energy balance and obesity, intracerebroventricular administration of NPY or leptin also causes bone loss. Here we show that Y2 receptor-deficient m...
متن کاملNovel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis.
The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1(-/-) mice with a generalized increase in bone formation on cortica...
متن کاملFasting inhibits the growth and reproductive axes via distinct Y2 and Y4 receptor-mediated pathways.
Neuropeptide Y, a neuropeptide abundantly expressed in the brain, has been implicated in the regulation of the hypothalamo-pituitary-somatotropic axis and the hypothalamo-pituitary-gonadotropic axis. Elevated hypothalamic neuropeptide Y expression, such as that occurs during fasting, is known to inhibit both of these axes. However, it is not known which Y receptor(s) mediate these effects. Here...
متن کاملGreater bone formation of Y2 knockout mice is associated with increased osteoprogenitor numbers and altered Y1 receptor expression.
Germ line or hypothalamus-specific deletion of Y2 receptors in mice results in a doubling of trabecular bone volume. However, the specific mechanism by which deletion of Y2 receptors increases bone mass has not yet been identified. Here we show that cultured adherent bone marrow stromal cells from Y2(-/-) mice also demonstrate increased mineralization in vitro. Isolation of two populations of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 281 33 شماره
صفحات -
تاریخ انتشار 2006